2,037 research outputs found

    Reduced leakage current in Josephson tunnel junctions with codeposited barriers

    Full text link
    Josephson junctions were fabricated using two different methods of barrier formation. The trilayers employed were Nb/Al-AlOx/Nb on sapphire, where the first two layers were epitaxial. The oxide barrier was formed either by exposing the Al surface to O2 or by codepositing Al in an O2 background. The codeposition process yielded junctions that showed the theoretically predicted subgap current and no measurable shunt conductance. In contrast, devices with barriers formed by thermal oxidation showed a small shunt conductance in addition to the predicted subgap current.Comment: 3 pages, 4 figure

    Exploring the seismic expression of fault zones in 3D seismic volumes

    Get PDF
    Acknowledgments The seismic interpretation and image processing has been run in the SeisLab facilty at the University of Aberdeen (sponsored by BG, BP and Chevron) Seismic imaging analysis was performed in GeoTeric (ffA), and Mathematica (Wolfram research). Interpretation of seismic amplitudes was performed Petrel 2014 (Schlumberger). We thank Gaynor Paton (Geoteric) for in depth discussion on the facies analysis methodology and significant suggestions to improve the current paper. We thank the New Zealand government (Petroleum and Minerals ministry) and CGG for sharing the seismic dataset utilized in this research paper. Seismic images used here are available through the Virtual Seismic Atlas (www.seismicatlas.org). Nestor Cardozo and an anonymous reviewer are thanked for their constructive comments and suggestions that strongly improved the quality and organization of this paper.Peer reviewedPostprin

    ENVIROSAT-2000 report: Federal agency satellite requirements

    Get PDF
    The requirement of Federal agencies, other than NOAA, for the data and services of civil operational environmental satellites (both polar orbiting and geostationary) are summarized. Agency plans for taking advantage of proposed future Earth sensing space systems, domestic and foreign, are cited also. Current data uses and future requirements are addressed as identified by each agency

    DNA transfer: The role of temperature and drying time

    Get PDF
    It has previously been shown, and reconfirmed here, that biological material on a substrate will transfer readily upon contact with another substrate when wet but hardly when dry. There is however a paucity of data regarding the speed at which body fluids dry and how this may affect its transfer upon contact. Here we conduct transfer experiments at 4 �C, 22 �C and 40 �C at multiple time points during the drying process. The speed at which blood dries is dependent on the temperature, with the drying process complete within 15–60 min. The percentage of deposited DNA transferred upon contact follows an exponential pattern of decline from soon after deposition, decreasing until the sample is dry. There are no differences in transfer rates upon contact among the different temperature conditions within the first 5 min or after 60 min since deposit, but significant variation occurs between these time points. When considering the likelihood of a proposed scenario that incorporates one or more contact situations it is important to consider the timing of the potential transfer event(s) relative to when the biological sample in question was initially deposited. The results of this study will assist the interpretation and evaluation of alternative scenarios involving transfer of biological substances

    LISREL analysis of twin data with structured means

    Get PDF
    Introduces a method to test the hypothesis that the phenotypic means and the phenotypic covariances can be modeled with the same common genetic and environmental factors. LISREL can be used to implement the method. An illustration with simulated twin data is provided

    Homologous and heterologous desensitization of guanylyl cyclase-B signaling in GH3 somatolactotropes

    Get PDF
    The guanylyl cyclases, GC-A and GC-B, are selective receptors for atrial and C-type natriuretic peptides (ANP and CNP, respectively). In the anterior pituitary, CNP and GC-B are major regulators of cGMP production in gonadotropes and yet mouse models of disrupted CNP and GC-B indicate a potential role in growth hormone secretion. In the current study, we investigate the molecular and pharmacological properties of the CNP/GC-B system in somatotrope lineage cells. Primary rat pituitary and GH3 somatolactotropes expressed functional GC-A and GC-B receptors that had similar EC50 properties in terms of cGMP production. Interestingly, GC-B signaling underwent rapid homologous desensitization in a protein phosphatase 2A (PP2A)-dependent manner. Chronic exposure to either CNP or ANP caused a significant down-regulation of both GC-A- and GC-B-dependent cGMP accumulation in a ligand-specific manner. However, this down-regulation was not accompanied by alterations in the sub-cellular localization of these receptors. Heterologous desensitization of GC-B signaling occurred in GH3 cells following exposure to either sphingosine-1-phosphate or thyrotrophin-releasing hormone (TRH). This heterologous desensitization was protein kinase C (PKC)-dependent, as pre-treatment with GF109203X prevented the effect of TRH on CNP/GC-B signaling. Collectively, these data indicate common and distinct properties of particulate guanylyl cyclase receptors in somatotropes and reveal that independent mechanisms of homologous and heterologous desensitization occur involving either PP2A or PKC. Guanylyl cyclase receptors thus represent potential novel therapeutic targets for treating growth-hormone-associated disorders
    corecore